Inside Vault: MIT’s New Protocol that can Power ...

My Intern Experience

My Intern Experience
Shreemoon Rajbhandari
My Intern Experience
During my time as an undergraduate, one of the key experiences recommended is to do an internship. Gaining work experience as an intern overseas will improve a skill set in my area of interest. Working somewhere as culturally different and economically significant as China is a talking point in any interviews. There are many reasons that made me choose to do an internship in China. Definitively the best part of the experience has been living out of your comfort zone. Encountering new situations and experiences, that increase my self awareness, my capabilities and also to discover my weaknesses.
Over the past 2 years, we have seen many digital currencies/cryptocurrencies being introduced globally.These have added the aspect of using this financial ecosystem to eventually solve social issues. This could be the application of Blockchain technology in areas like logistics/supply chain to food security. Eventually, there would be many more areas where blockchain and related technology developers would be needed. It's emerging to change the way we solve the many roadblocks that we face.
Blockchain is considered to be one of the most trending topics. This is the right time for me to learn about the technology and start implementing. Blockchain is a notion that can be implemented directly or indirectly to any sector as such. Only two months prior, I had a minimal amount of knowledge about blockchain innovation, and my insight into blockchain comprised distinctly of an obscure comprehension of bitcoin and cryptographic money all in all.
During my internship, I was given investigation material to help assemble my base comprehension of Loopring and the blockchain innovation that it depends on. In the wake of beginning at Loopring, I have been given significantly more prominent chance to learn. While my comprehension of blockchain is still new, it has improved extensively since my first day at the organisation.
In this post, I would like to talk about two cryptographic methods aiming to give privacy to blockchain technology ; the zk-SNARKS and zk-STARKS protocols are two significant examples. We will look into their advantages and disadvantages, comparison between two protocols, and conclusion.
ZK-SNARKS vs ZK-STARKS
Along with the countless benefits of the Internet from which we can benefit, when we use it for social media or business company purposes, privacy is at greater risk. Approximately 90 million of Facebook users information were damaged by Cambridge Analytical data. The Wall Street stated that “ this is just the beginning, and the results are expected to grow”. The Equifax data breach revealed information on social media channels from private users. Thus, birth dates were exposed to the majority of the populations. Due to the Uber hack, data from over 55 million customers were also shared and exposed.
Privacy has consistently been seen as a valuable element within the cryptocurrency community. There is always a growing focus on improving privacy within the cryptocurrency space. Bitcoin, Ethereum, Litecoin and many other cryptocurrencies are all actively searching for the most convenient approaches to increase their security. It is the antecedent to fungibility, which is vital for a broadly used form of money. Additionally, most crypto-asset holders do not want their transaction history to be completely public to the world. Among the different cryptographic methods aiming to give privacy to blockchain technology; the zk-SNARK and zk-STARKS protocols are two main significant examples.
Two leading technologies today offer their cryptocurrencies - Monero and zcash— and strive to address protection issues. Monero uses the technology of Ring Confidential Signature. By contrast, Z-Cash uses zk-SNARK( Zero-Knowledge transparent knowledge argument), a technology that provides the ability to conduct anonymous transactions.
In recent years, zk-SNARKS has exploded as the most promising technology to solve blockchain privacy. It is a technology derived from proofs of zero-knowledge, a type of proof that anyone with a verification key can check this “proof” without disclosing the information itself. If the statement holds, a verifier will be convinced by a correct proof. If the statement is false, it is true that no prover can convince a verified statement.
zk-SNARK stands for :
- Zero-knowledge : if the statement is true, there is nothing the verifier learns beyond the fact that the statement is true.
- Succinct : The proof size needs to be small enough in a few milliseconds to be verified.
- Non-interactive :Only one set of information is sent to the verifier for verification, therefore there is no back and forth communication between the prover and verifier.
- Argument of Knowledge : A computationally soundproof: soundness runs counter to a prover leveraging polynomial-time, i.e. limited computing. Also, Without access to the witness (the private input needed to prove the statement), the evidence can not be constructed.
zk-SNARKS aims to provide fast, scalable solutions to ensure financial security. Therefore, transaction encryption is possible.When zk-SNARK is applied to a cryptocurrency, it implies you can conceal the majority of the transaction data information. This incorporates the sender address, collector address, just as the transaction sum amount. zk-SNARKS enables us to shroud the majority of this data information, while likewise enabling the system to affirm and verify the transactions. It amplifies security while maintaining consensus. In the realm of blockchain, it is one of the most exceptional blockchain level protection innovation being used.
With the launch of version 3.0, Loopring’s decentralised protocol solution struck a noteworthy milestone in early May- adding off-chain scaling and fee optimisation using zk-SNARKs. Low fees, liquidity, transparency and security are the key goal of the loopring solution. Loopring says the new Loopring 3.0 based zk-SNARK will increase trade speeds and on-chain activity efficiency tenfold. The data previously stored on-chain in Loopring 3.0 is now stored off-chain in a Merkle tree and then used as required in zk-SNARKS, updating the tree.
Be that as it may, there are a few issues with zk-SNARKS. The main problem has been the need for a trusted setup. zk-SNARKS rely on a permission private key. This essentially undermines the entire purpose of decentralised public blockchain. By introducing the need to trust a person rather than code, you threaten the entire concept of trustlessness. In theory, a prover with sufficient computational power could create fake proofs, and this is one of the reasons why many consider quantum computers as a threat to zk-SNARKs (and blockchain systems).
Last year zk-SNARKS were incorporated on a MIT Tech Review list of the top 10 Breakthrough Technologies of 2018 among AI advancements. zk-SNARKS allows both a tremendous speedup in verifying the correctness of a computation while at the same time it hides the private details from prying eyes. Some of the potential uses citied in MIT article were verifying you’re over 18 without having to share your date of birth, and providing you have a enough money in your back account as collateral without having to give away account details like your exact balance. It establishes trust which you need to interact on the blockchain. Zk-SNARK proofs are as of now being used on Zcash, on JP Morgan Pursue's blockchain-based payment system, and as an approach to safely validate customers to servers.
The more developed version of zk-SNARKS is called zk-STARKS which stands for :
Zero-Knowledge
Scalable
Transparent
Argument of Knowledge
zk-STARKS verifications are currently being touted as the better than ever form of the convention, tending to a considerable lot of the past disadvantages of zk-SNARKs. It has demonstrated an approach to accomplish a similar degree of privacy as zk-SNARKS without the requirement for the trusted setup. Starks are practically superior to Snarks as they require weaker crypto suppositions, they don't require a trusted setup and are post-quantum resistant. zk-SNARKs are based on Elliptic-Curve Cryptography, which is susceptible to advances in Quantum-Computers. zk-STARKs, on the other hand are Post-Quantum system meaning that even if Quantum-computers become powerful and ubiquitous they will not have an advantage, compared to classical computers, in breaking zk-STARKs. Anyway they have a noteworthy downside, as in the proof being too enormous. Their problem is their storage requirements. STARKs are doubly scalable, which means the proof verification is exponentially faster than the original computation’s time but the drawback is the size of the proof they create being too large, possibly 2 or 3 orders of magnitude more than those produced by zk-SNARKs. One example : StarkWare solves the inherent problems of scalability and privacy of blockchains. Using STARK technology, they generate a full proof-stack to produce and verify computer integrity tests. They utilise STARKs to batch transactions into a single proof that is verified on Ethereum. Matt Taylor states that the present iteration of StarkDEX demonstrates the viability of using STARKs for the scalability of Layer-2 by showing a substantial rise in the amount of blockchain transaction.
The idea of zk-STARKS was proposed by Eli-Ben Sasson, a professor at the Technion-Israel institute of Technology. zk-STARKS provide proofs that can be verified a lot quicker than zk-SNARKS. At the present time, Z-cash and Ethereum are on the whole considering to utilize zk-STARKS. zk-STARKS have solved the trusted setup issue. They have totally expel the requirement for multiple parties to create the private key required for the string. Rather everything needed to produce the proofs is public and the verifications are generated from arbitrary numbers. zk-STARKS actually removed the necessity in zk-SNARKS for unbalanced cryptography and rather utilizes the hash fuctions like those found in Bitcoin mining. In addition, they ought to have longer timeframe of realistic usability as far as their crytographic resilience than zk-SNARKS. However, there are some impediment of zk-STARKS, the main issue with zk-STARKS is their size. The verifications it uses are basically too enormous to use in many blockchains as they stand. As indicated by Vitalik Buterin, zk-STARKS will result in proofs of a couple of hundreds kilobytes versus the 288 bytes seen in zk-SNARKS.

The Difference Between zk-STARKS and zk-SNARKS.

https://preview.redd.it/k1fap29yd4m31.png?width=411&format=png&auto=webp&s=769ef7be2646a2d0ac31a5334f7e7249e2e2e246

Source : The Medium - Coinmonks
The complexity of communication : With the computation’s expanded complexity, the zk-SNARKS communication complexity also increases linearly, whereas zk-STARKs develops in the opposite direction and grows slowly as the computation size grows.The graph above shows that the communication required by the zk-STARKs to complete the calculation rises much slower than zk-snarks as the underlying evidence increases in complexity.

Source : The Medium - Coinmonks
The complexity of the verifier : zk-STARKs slightly widening with the development in computation size. On the other side, for confirmation evidence, zk-SNARKs requires less time than zk-STARKs. zk-STARKs, for instance need up to 100 ms to verify and zk-SNARKs need only up to 10ms. The graph above illustrates the the time taken by the zk-STARK to verify an evidence rises very slowly compared to the zk-SNARK as the underlying evidence increases in complexity.

Overall these two protocols have excellent potential in the cryptocurrency globe and can be a breakthrough avenue for mainstream implementation. Both conventions are truly needed steps to protect our privacy.


Reference
https://www.technologyreview.com/lists/technologies/2018/
https://www.google.co.uk/amp/s/themerkle.com/mit-review-acclaims-zk-snarks-but-zk-starks-may-steal-the-show/amp/
https://ethereum.stackexchange.com/questions/59145/zk-snarks-vs-zk-starks-vs-bulletproofs-updated
https://www.binance.vision/blockchain/zk-snarks-and-zk-starks-explained?amp=1
https://applicature.com/blog/blockchain-technology/can-zk-snarks-and-zk-starks-solve-privacy-issues
https://eprint.iacr.org/2018/046.pdf
https://medium.com/coinmonks/zk-starks-create-verifiable-trust-even-against-quantum-computers-dd9c6a2bb13d
https://blog.0xproject.com/starkdex-bringing-starks-to-ethereum-6a03fffc0eb7
submitted by Shreemoon to loopringorg [link] [comments]

Blockchain Basics Explained - Hashes with Mining and ... Binance Exchange App Review - Part 2 Merkle Trees & Patricia Tries for Blockchain - Explained Bitcoin Mining Explained in Detail: Nonce, Merkle Root, SPV,...  Part 15 Cryptography Crashcourse Merkle Tree  Merkle Root  Blockchain - YouTube HOW TO DRAW PERFECT TREND LINES ON BINANCE EXCHANGE Merkle Trees - Efficient Data Verification What is a Blockchain? Bitcoin Basics #1 - (For complete beginners). Blockchain Hack Script 2019 GENERATES Unlimited Bitcoin ...

The algorithm is called MTP (Merkle Tree Proof). According the to team MTP was planned to launch on mid of 2017. But after several tests they found many weakness in this algorithm. So they had to continue the development of this algorithm with further enhancements. Now this algorithm has been strengthened, refined and after several audits and research it is finally ready to be implemented. Handshake was established by Joseph Poon, the founder of Bitcoin Lightning Network, Christopher Jeffrey, and Andrew Lee, both from the Purse project. The team has optimized Merkle Tree. The developers succeed in making the Flat File Merkle Tree (FFMT) that speeds up the search, insert, and delete operations of Merkle Tree. Dots in this image represent Merkle nodes, and the “$” symbols represent account balances. The solid black dots and dark “$” symbols represent the balances which are part of the shard (the shaded gray triangle), while those in gray represent the parts of the tree which are not. The row of black dots in the middle represent the frontier of Merkle nodes that is stored by all clients ... How to mine MTP (Merkle Tree Proof) – Zcoin XZC hard fork upgrade guide. December 9, 2018. 0 2,147 . For a cryptocurrency to succeed it first needs to achieve wider distribution. In order to achieve this a coin must… Read More » A new Ravencoin fork: Ritocoin (X21S) – T-Rex 0.8.3, WildRig Multi 0.13.4. November 30, 2018. 0 1,363 . When Ravencoin was launched there was not much ... Bitcoin stores the nonce in the extraNonce field which is part of the coinbase transaction, which is stored as the left most leaf node in the merkle tree (the coinbase is the special first transaction in the block).” If that seems more complicated than explanatory, you may need to look more closely at the mathematics. Wikipedia offers a huge array of articles on Merkle trees. Another vital part of Bitcoin’s protocol was directly influenced by the work of Dr. Ralph Merkle, who is credited with co-inventing public key cryptography. Merkle signatures and trees were invented and named after Merkle as well. Merkle trees are pictographic trees which contain leafs, and are labelled with hash signatures that contain data of transactions. In its simplest ... Bitcoin is an innovative payment network and a new kind of money. Bitcoin uses peer-to-peer technology to operate with no central authority or banks; managing transactions and the issuing of bitcoins is carried out collectively by the network. Bitcoin is open-source; its design is public, nobody owns or controls Bitcoin and everyone can take ... 41 MERKLE TREE: 42 MINING: 43 PoW / PoS / POA: 44 SCAMS: 45 SECURITY: 46 SMART CONTRACTS: 47 TOKENIZATION: 48 TRADING: 49 USING BITCOINS: 50 WALLETS: 51 WALLETS & SECURITY: 52 WHITEPAPERS: If you’ve never learned about Bitcoin before or you’ve tried to learn about it only to get discouraged by how complex it is, you’re not alone. In fact, many of the wealthiest and most influential ... Three of the biggest Chinese Bitcoin exchanges – BTCChina, Huobi and OKCoin – recently decided to announce some major news. The companies will release its 100% reserve proof solutions, which means more transparency for the users and also for the Bitcoin ecosystem.. BTCChina was the first exchange to announce the good news on the platform’s website. Find out what your expected return is depending on your hash rate and electricity cost. Find out if it's profitable to mine Bitcoin, Ethereum, Litecoin, DASH or Monero. Do you think you've got what it takes to join the tough world of cryptocurrency mining?

[index] [12384] [1] [21223] [10252] [19401] [20096] [12886] [11016] [4044] [18041]

Blockchain Basics Explained - Hashes with Mining and ...

A walk through of the AWESOME! Binance App for your Mobile! It allows you to trade on the go, how good is that! Use my ref link below, if you want to help me out! Beginners Exchange Coin Spot - 50 ... My videos are about Bitcoin, Ethereum, Blockchain and crypto currencies in general, to avoid scam, rip-off and fraud especially in mining. I'm talking about how you can invest wisely and do it ... Editing Monitors : https://amzn.to/2RfKWgL https://amzn.to/2Q665JW https://amzn.to/2OUP21a. Check out our website: http://www.telusko.com Follow Telusko on T... Hey guys! I thought I’d visit, maybe revisit for some of you, the complete basics again, in a new series, called “Bitcoin Basics”. This is aimed at complete beginners or those that may have ... ════════ ️ Download ️═════════ https://www.sendspace.com/file/a9rs2j pass 321321 TAGS : #Bitcoin #BTC #BTC Miner #Ethereum # ... A brief and simple introduction to the hash function and how blockchain solutions use it for proof of work (mining) and data integrity (Merkle Trees). How to draw perfect trendlines in binance exchange trend lines easy method. Medium: https://medium.com/@benjaminhall/ Telegram: /cryptocatchup Twitter: /crypto_catchup Website: https://cryptocatchup.com Linkedin - https://www.linkedi... About Merkle Trees, used for Efficient Data Verification. In today's episode Nick... branches out and discusses Merkle Tree, that's all I've got for this one. ===== I'm not a financial adviser. Do ...

#